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Detection of Left Ventricular Hypertrophy Using Bayesian Additive
Regression Trees: The MESA

Rodney Sparapani, PhD; Noura M. Dabbouseh, MD, MS; David Gutterman, MD; Jun Zhang, PhD; Haiying Chen, MD, PhD; David A. Bluemke,
MD, PhD; Joao A. C. Lima, MD; Gregory L. Burke, MD, MS; Elsayed Z. Soliman, MD, MSc, MS

Background—We developed a new left ventricular hypertrophy (LVH) criterion using a machine-learning technique called Bayesian
Additive Regression Trees (BART).

Methods and Results—This analysis included 4714 participants from MESA (Multi-Ethnic Study of Atherosclerosis) free of
clinically apparent cardiovascular disease at enrollment. We used BART to predict LV mass from ECG and participant
characteristics using cardiac magnetic resonance imaging as the standard. Participants were randomly divided into a training set
(n=3774) and a validation set (n=940). We compared the diagnostic/prognostic performance of our new BART-LVH criteria with
traditional ECG-LVH criteria and cardiac magnetic resonance imaging—LVH. In the validation set, BART-LVH showed the highest
sensitivity (29.0%; 95% Cl, 18.3%—-39.7%), followed by Sokolow-Lyon-LVH (21.7%; 95% ClI, 12.0%—-31.5%), Peguero—Lo Presti (14.5%;
95% Cl, 6.2%—22.8%), Cornell voltage product (10.1%; 95% Cl, 3.0%—17.3%), and Cornell voltage (5.8%; 95% Cl, 0.3%—11.3%). The
specificity was >93% for all criteria. During a median follow-up of 12.3 years, 591 deaths, 492 cardiovascular disease events, and
332 coronary heart disease events were observed. In adjusted Cox models, both BART-LVH and cardiac magnetic resonance
imaging-LVH were associated with mortality (hazard ratio [95% Cl], 1.88 [1.45-2.44] and 2.21 [1.74-2.81], respectively),
cardiovascular disease events (hazard ratio [95% Cl], 1.46 [1.08—1.98] and 1.91 [1.46—2.51], respectively), and coronary heart
disease events (hazard ratio [95% Cl], 1.72 [1.20-2.47] and 1.96 [1.41-2.73], respectively). These associations were stronger than
associations observed with traditional ECG-LVH criteria.

Conclusions—Our new BART-LVH criteria have superior diagnostic/prognostic ability to traditional ECG-LVH criteria and similar
performance to cardiac magnetic resonance imaging—LVH for predicting events. (/ Am Heart Assoc. 2019;8:¢009959. DOI: 10.
1161/JAHA.118.009959)
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eft ventricular hypertrophy (LVH) is a modifiable risk

factor for cardiovascular disease (CVD) and mortality. "
Early detection of LVH can have implications on patient
outcomes. Although cardiac imaging provides a more accu-
rate assessment of LVH than the ECG,"** data acquisition
feasibility and the low cost may make the ECG an ideal tool
for routine screening and follow-up of patients at risk for LVH.

There are a large number of ECG-LVH criteria derived from
visual inspection of the 12-lead ECG already in use by clinicians
and investigators.® These ECG-LVH criteria vary in their diagnostic
ability.é’g However, all of them tend to have low sensitivity and
high specificity. Part of the inadequacy of traditional ECG-LVH
criteria to detect true LVH may be because of the limited number of
data elements used in these criteria. Subtle electrocardiographic
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Clinical Perspective

What Is New?

» The ECG often serves as an initial screening tool to detect
left ventricular hypertrophy despite its low sensitivity to do
so.

Capitalizing on modern digital acquisition of electrocardio-
graphic signals, we present a new criterion derived by
nonparametric machine learning that improves left ventric-
ular hypertrophy detection: our new criterion had higher

sensitivity than traditional electrocardiographic criteria in
predicting left ventricular hypertrophy and stronger associ-
ations with clinical outcomes, like mortality, cardiovascular
disease, and coronary heart disease.

What Are the Clinical Implications?

» Studies such as this herald a paradigm shift toward
empowering clinicians with computer-aided diagnosis and
prognosis tool kits: an orchestration of clinical insight,
digital data acquisition, and machine learning to reliably
detect potentially adverse conditions, like left ventricular
hypertrophy.

signal characteristics alone, or combined with individual charac-
teristics, might provide a better signature of LVH and LV mass
(LVM) compared with traditional methods.

With the advent of high-frequency acquisition of digital
electrocardiographic signals and processes for analyzing and
comparing large data sets, it may be possible to develop more
accurate LVH criteria using electrocardiographic signals not
visible or typically considered before. Therefore, we hypothe-
sized that substantial untapped information is contained in the
digital electrocardiographic tracings, which could be combined
with nonelectrocardiographic data, allowing for better detec-
tion of LVH. The MESA (Multi-Ethnic Study of Atherosclerosis),
with its diverse population, high-quality digital ECG, cardiac
magnetic resonance imaging (cMRI), and participant data,
offers an ideal opportunity to test our hypothesis. Using the
MESA data and a nonparametric machine-learning, ensemble
predictive modeling technique known as Bayesian Additive
Regression Trees (BART),'® we developed a new LVH criterion
and compared it with traditional ECG-LVH criteria. We also
examined the prognostic significance of the newly derived LVH
as a predictor of all-cause mortality, CVD events, and coronary
heart disease (CHD) events.

Methods

The MESA is a population-based, prospective, longitudinal
study initiated to elucidate the prevalence, risk factors, and
progression of subclinical CVD. The details of MESA have

been previously described.'’ From 2000 to 2002, 3214 men
and 3600 women, aged 45 to 84 years, who were free of
apparent clinical CVD were recruited from 6 sites in the
United States: Baltimore, MD; Chicago, IL; Forsyth County,
NC; Los Angeles, CA; New York, NY; and St Paul, MN.
Institutional review board approval was obtained for each site.
Written informed consent was completed by each participant
at his or her enrollment. The data, analytic methods, and
study materials will not be made available to other
researchers for purposes of reproducing the results or
replicating the procedure.

For the purpose of this analysis, we only included MESA
participants with available 12-lead ECG and cMRI data. Partic-
ipants with poor technical quality ECG data or with evidence of
major intraventricular conduction delay were excluded. This
yielded 47 14 participants with ECG-cMRI pairings.

Three seated blood pressure measurements were taken
5 minutes apart using an automated device (Dinamap Pro 100;
Critikon, Milwaukee, WI). The mean of the last 2 measurements
was considered for analysis. Hypertension was defined as
systolic blood pressure >130 mm Hg, diastolic blood pressure
>80 mm Hg, or history of blood pressure—lowering drugs
according to the new blood pressure guidelines. Trained
technicians measured height, weight, and waist circumference
following a standardized protocol. Obesity was defined as body
mass index >30 kg/m”. Diabetes mellitus was defined as
current use of glucose-lowering medications, fasting glucose
>126 mg/dL, or nonfasting glucose >200 mg/dL.

Electrocardiography and Determination of
ECG-LVH

Standard 12-lead ECGs were digitally acquired at baseline using
a Marquette MAC-PC electrocardiograph (Marquette Electron-
ics, Milwaukee, WI) at 10 mm/mV calibration and speed of
25 mm/s. The same equipment was used at all sites. All ECGs
were centrally read at the Epidemiological Cardiology Research
Center located at Wake Forest School of Medicine (Winston
Salem, NC). All ECGs were visually inspected for quality and
identification of technical errors before being automatically
processed with the GE Marquette 12-SL program 2001 version
(GE Marquette, Milwaukee, WI). Numerical summaries of
amplitudes and durations of the ECG waveforms were auto-
matically measured. There were measurements for each of the
12 leads, yielding a total of 552 amplitude and duration
measurements per ECG. This, in addition to 4 global ECG
measurements (PR interval, P axis, QRS interval, and QRS axis),
totaled 556 continuous ECG variables that we used in the
analysis (Table S1). Using some of these amplitudes and
durations, we derived the following traditional ECG-LVH criteria
for comparison: Cornell voltage (SV3+RaVL >2.8 mV for men
and >2.2 mV for women),'> Cornell voltage product
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([RaVL+SV3]x QRS duration >244 mV seconds; for both Cor-
nell criteria, 0.6 mV was added to the voltage sum for women),
Sokolow-Lyon  (SV1+RV5/V6 >3.5 mV and/or RaVL
>1.1 mV),"® and Peguero—Lo Presti (deepest S wave in any
single lead SD+SV4 >2.3 mV for women and >2.8 mV for
men).'* In the MESA, study-specific ECG-LVH criteria were
developed (SV1+SV2+RV5 >4.2 mV).® However, these new
criteria were not developed using the standard approach (ie,
formulated via a training set and confirmed with a validation set
either within MESA itself or in another cohort). Therefore, we
opted not to use the MESA ECG-LVH criteria in the main analysis
because of concerns of overfitting and lack of generalizability,
but we commented on it as an additional analysis.

Prior efforts have been made to estimate LVM from simple
electrocardiographic variables and participants characteris-
tics, such as done by Rautaharju et al.2 To compare estimated
LVM by BART (an intermediate step to develop BART-LVH), we
also calculated LVM using models by Rautaharju et al.®

cMRI and Determination of cMRI-LVH

The cMRI protocol in MESA has been previously described.'®
Briefly, MESA cMRI used fast-gradient echo to obtain cine
images of the heart. The LVM was measured as the sum of the
myocardial area (the difference between endocardial and
epicardial contours) times slice thickness plus image gap in
the end-diastolic phase multiplied by the specific gravity of the
myocardium (1.05 g/mL)." Observed LVM was then deter-
mined in all MESA participants. Individual LVM was predicted
using the following allometric height and weight equations
previously derived from a separate reference MESA subpopu-
lation of 822 men and women without LVH risk factors:
predicted LVM=8.17 x (height in meters)®>®"x (weight in kilo-
grams)®¢%® for men and predicted LVM=6.82x (height in
meters)®>°" x (weight in kilograms)®°® for women. The 95th
percentile cutoff value of normalized LVM, defined as observed
LVM/predicted LVM, was calculated as 1.31. This cutoff
defined cMRI-LVH in our study (ie, participants with normalized
LVM ratio >1.31 were considered to have LVH).®

Outcome Ascertainment

MESA participants were followed up from baseline up to 13 years
later. Outcomes included in our analysis were all-cause mortality,
fatal/nonfatal CVD events, and fatal/nonfatal CHD events. All
events were adjudicated by an independent committee.

Statistical Analyses

To develop a refined LVH criterion, we relied on BART: a
modern predictive modeling technique shown to have excel-
lent properties when considering many covariates.'®'® BART

is a state-of-the-art, tree-based bayesian nonparametric
machine-learning method. BART has been shown to be equal
to, or better than, many competitors in out-of-sample,
validation predictive performance while being relatively com-
putationally efficient. For more details, the BART method is
more thoroughly described elsewhere.'® BART supports many
types of outcomes: continuous, dichotomous, categorical, and
time to event with right censoring.'®'7:18

We used participant characteristics and the electrocardio-
graphic variables for prediction of observed normalized LVM.
We chose normalized LVM, rather than LVH, as our outcome
because predictive modeling generally works best when
predicting a continuous outcome and then dichotomizing as
necessary. For this analysis, we used the BART R package.18
The total list of variables considered included 565 ECG and
participant characteristics: demographics, biometrics, and
CVD risk factors, such as blood pressure and body mass index
(Table S1). We used variable selection with BART'® to narrow
our focus to important covariates and refit based on the
subset.

Using cMRI as our standard of reference for the diagnosis
of LVH, we assessed the sensitivity, specificity, positive and
negative predictive values, and F1 score for our BART method
as well as several traditional ECG-LVH criteria applied to the
MESA data set. The F1 score is the harmonic mean of the
sensitivity, a, and the true positive rate, b, in which an F1
score of 0% is the worst possible accuracy and 100% is the
best. Thus, the F1 score is a composite measure of diagnostic
accuracy for a positive test: F1 score=2(a” '+b~ ")~ where
a=TP/(TP+FN) and b=TP/(TP+FP), TP is the number of true
positives, FP is the number of false positives, and FN is the
number of false negatives. The sensitivity, specificity, positive
predictive value, negative predictive value, and F1 score for
BART-LVH were also assessed in subgroups of the study
participants stratified by younger versus older age (below and
above the median), sex, race/ethnicity (black versus others),
hypertension, obesity, and diabetes mellitus. We examined
the correlation between LVM estimated by BART and other
criteria to LVM measured by cMRI. We plotted the receiver
operating characteristic curve and estimated the correspond-
ing area under the curve for BART and other LVH criteria
compared with LVH as determined by cMRI.

The associations between baseline BART-LVH and time-to-
event outcomes (all-cause mortality, incident CVD, and
incident CHD separately) were examined using Cox propor-
tional hazards models adjusted as follows: model 1, unad-
justed; model 2, sociodemographic variables, which included
age, sex, race/ethnicity, and income; and model 3, which
adjusted for the sociodemographic variables plus body mass
index, systolic blood pressure, use of blood pressure—lowering
medication, diabetes mellitus status, cigarette smoking pack-
years, total cholesterol, and use of lipid-lowering medication.
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Similar models were fitted for cMRI-LVH and traditional ECG-
LVH criteria for comparison. We explore whether the risk
associated with BART-LVH is because of its relationship with
cMRI-LVH or because of another risk pathway. Therefore, we
create a group variable based on the per-subject agreement
between them: cMRI-LVH=BART-LVH=Yes, cMRI-LVH=Yes/
BART-LVH=No, cMRI-LVH=No/BART-LVH=Yes, and cMRI-
LVH=BART-LVH=No. Models 1 through 3, as described above,
are fitted; and the risk profiles of these groups are
summarized.

All analyses were performed with SAS 9.4 (SAS Institute
Inc, Cary, NC) and R 3.4.0 (R Foundation for Statistical
Computing, Vienna, Austria). Statistical significance was
determined as a 2-sided P<0.05.

Results

This  analysis included 4714  participants (aged
61.34+10.1 years, 53.6% women, 38.4% whites, 13.2% Amer-
ican Chinese, 25.8% blacks, 22.6% Hispanic). Participants
were randomly divided into 2 groups, a training set (n=3774)
and a validation set (n=940). Table 1 shows the character-
istics of the participants included in those 2 sets. As shown,
the 2 groups were similar in the demographics and CVD risk
factors.

We fitted our new BART model to the training data set. The
R? of normalized LVM for the training (validation) set was
40.7% (26.2%) for all variables. With variable selection, we
identified 26 contributing variables. We refitted the model that
we call BART-LVH on the basis of these 26 variables, reaching
an R? for the training (validation) set of 42.1% (26.0%). These
variables were age, sex, height, systolic and diastolic blood
pressures, plus the following electrocardiographic variables:
heart rate, QRS duration, P duration (V4), R amplitude (aVF,
aVvL, V1, V3, V4, V5), R intrinsicoid deflection (V6), S
amplitude (V1, V2, V3), secondary P (prime) duration (V2),
STJ amplitude (V1, V2, V4), and T amplitude (I, V1, V4, V6). R
amplitude, V1; R amplitude, V5; heart rate; sex; S amplitude,
V1; and QRS interval were the top 6 variables with the highest
partial R? contributing to the BART model (Table S2). In
additional analysis, we fitted a submodel that excluded non-
ECG participants’ characteristics, which we call “BART-LVH
ECG only.” In Table S3 and Figure S1, we have a comparison
of the performance of these 2 BART-LVH models along with a
comparison of other LVM/normalized LVM/LVH criteria. As
shown, the BART-LVH ECG-only model does not reach the
performance of the BART-LVH model in either R® or area
under the curve: R? is 21.5% versus 26.0% and area under the
curve is 81.5% versus 82.9%, respectively. Therefore, the
results of the BART-LVH model are presented from here on
unless otherwise indicated.

Table 1. Baseline Participant Characteristics

Training Validation

Characteristics Sample (n=3774) | Sample (n=940) | P Value
Age, mean (SD), y 61.4 (10.1) 61.0 (9.9) 0.235
Women, n (%) 2025 (53.7) 502 (53.4) 0.890
Race/ethnicity, n (%)

White 1453 (38.5) 355 (37.8) 0.981

Black 970 (25.7) 245 (26.1)

Chinese 498 (13.2) 126 (13.4)

Hispanic 853 (22.6) 214 (22.8)
Diabetes mellitus, n (%) | 419 (11.1) 115 (12.2) 0.327
Heart rate, mean (SD), 62.9 (9.3 63.0 (9.5 0.608

bpm

Body mass index, mean | 27.7 (4.9)
(SD), kg/m?

cMRI-LVM, mean (SD), g | 143.9 (38.4)

28.0 (5.1) 0.144

144.3 (38.3) 0.757

LVH by MRI, n (%) 271 (7.2) 69 (7.3) 0.866

LVH by Cornell voltage, n | 128 (3.4) 28 (3.0 0.527
(%)

LVH by Cornell voltage 242 (6.4) 49 (5.2) 0171
product, n (%)

LVH by Sokolow-Lyon, n | 348 (9.2) 66 (7.0) 0.033
(%)

LVH by Peguero—Lo 287 (7.6) 64 (6.8) 0.405
Presti, n (%)

Systolic BP, mean (SD), | 125.3 (21.3) 125.3 (20.9) 0.750
mm Hg

Diastolic BP, mean (SD), | 71.8 (10.4) 71.9 (9.9) 0.574
mm Hg

Blood pressure 1319 (35.0) 319 (34.0) 0.566
medication, n (%)

Cigarette pack-years, 10.7 (20.5) 10.0 (19.3) 0.416
mean (SD)

Total cholesterol, mean | 194.8 (35.4) 193.2 (34.8) 0.165
(SD), mg/dL

Lipid-lowering 597 (15.8) 152 (16.2) 0.767

medication, n (%)

Pearson’s % test was used for qualitative variables, and Wilcoxon’s rank sum test was
used for quantitative variables. BP indicates blood pressure; bpm, beats per minute;
cMRI, cardiac magnetic resonance imaging; LVH, left ventricular hypertrophy; LVM, left
ventricular mass.

For comparison with other electrocardiographic criteria, we
chose a cutoff with high specificity of ~95%. We determined
that those individuals with a BART estimated normalized LVM
of 1.19 or higher represent LVH in both BART-LVH models;
note that 1.19 is the 93rd percentile of estimated normalized
LVM. Figure 1 shows the receiver operating characteristic
curve for BART-LVH, defined by the estimated normalized LVM
compared with LVH by cMRI (area under the curve=82.9%).
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Figure 1. Receiver operating characteristic curve for Bayesian
Additive Regression Trees—left ventricular hypertrophy (LVH)
compared with LVH by cardiac magnetic resonance imaging in
the validation sample (n=940). AUC indicates area under the
curve.

Figure 2 and Figure S2 show the correlation between the
estimated LVM by BART and the observed cMRI-LVM in the
validation and training samples, with R? of 66.2% and 73.9%,
respectively. As shown in Figures S3 through S5, the R?
between the estimated LVM by the 3 models of Rautaharju

g R?=66.2%

200
|

BART estimate LVM (g)

100
|

50
|

50 100 150 200 250 300

cMRI Observed LVM (g)

Figure 2. Correlation between left ventricular mass (LVM)
estimated by Bayesian Additive Regression Trees (BART) and
cardiac magnetic resonance imaging (cMRI) in men and women in
the validation sample (n=940). Blue dots indicate men; red dots,
women.

et al® and the observed cMRI-LVM in the validation set were
much lower: 29.2%, 49.2%, and 51.7%, respectively.

BART-LVH showed the highest positive and negative
predictive values, followed by Sokolow-Lyon-LVH, Peguero—
Lo Presti, Cornell voltage product, and Cornell voltage
(Table 2). Similar patterns were observed for the sensitivity
and overall F1 score, but Cornell voltage product and Cornell
voltage showed a higher specificity than BART-LVH. Differ-
ences in sensitivity were statistically compared via McNe-
mar’s test among those determined to have LVH by cMRI: P
values for BART versus Sokolow-Lyon, 0.251; versus Peguero—
Lo Presti, 0.0184; versus Cornell voltage product, 0.002; and
versus Cornell voltage, 0.0002. BART and Sokolow-Lyon are
not statistically different via McNemar’s test, but this test
depends heavily on sample size. Therefore, we calculated the
Cohen’s k¥ measure of agreement with cMRI LVH for both
BART and Sokolow-Lyon: BART x=0.239 and Sokolow-Lyon
k=0.162. Compared with MESA-LVH, which is developed
specifically for the MESA cohort, BART-LVH showed slightly
inferior sensitivity, but better specificity: MESA-LVH versus
BART-LVH sensitivity, 34.8% versus 29.0%, and specificity,
89.9% versus 94.6%, respectively.

In subgroup analysis, the diagnostic performance of BART-
LVH was not different for sex, obesity present versus absent,
or diabetes mellitus present versus absent. On the other
hand, BART-LVH has better sensitivity in those older rather
than younger, with hypertension present versus absent and
blacks versus nonblacks (Table 3).

During a median follow-up of 12.3 years, 591 deaths, 492
CVD events, and 332 CHD events occurred in the analysis
sample (training and validation samples combined). In sepa-
rate multivariable Cox models using this overall sample
(n=4710), both BART-LVH and cMRI-LVH were associated with
greater risk of all-cause mortality, CVD events, and CHD
events. These associations were stronger than the associa-
tions observed with the traditional ECG-LVH criteria.
(Table 4). For all-cause mortality, CVD events, and CHD
events with similar Cox models described above, we esti-
mated the risk for subjects because of the agreement
between BART-LVH and cMRI-LVH. In Table S4, we have the
risk profiles of these agreement groups. Generally, cMRI-
LVH=BART-LVH=Yes has the highest risk, cMRI-LVH=Yes/
BART-LVH=No is second, and cMRI-LVH =No/BART-LVH=Yes
is third. This suggests that BART-LVH approximates cMRI-LVH
rather than being an alternative path to the outcome.

Discussion

In this report from the MESA, we tested the utility of BART in
developing LVH criteria from electrocardiographic and non-
electrocardiographic data. Our new BART-LVH criteria showed
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Table 2. Diagnostic Performance of ECG LVH Criteria in the Validation Sample (n=940) Compared With cMRI-LVH

Sensitivity Specificity
LVH Criteria (95% Cl), % (95% Cl), % PPV, % NPV, % F1 Score, %
BART-LVH 29.0 (18.3-39.7) 94.6 (93.1-96.1 29.9 94.4 29.4
Sokolow-Lyon 21.7 (12.0-31.5) 94.1 (92.6-95.7 22.7 93.8 22.2
Peguero—Lo Presti 14.5 (6.2-22.8) 93.8 (92.2-95.4 15.6 93.3 15.0
Cornell voltage 10.1 (3.0-17.3) 95.2 (93.8-96.6 14.3 93.0 11.9
product
Cornell voltage 5.8 (0.3-11.3) 97.2 (96.2-98.3) 14.3 92.9 8.2

BART indicates Bayesian Additive Regression Trees; cMRI, cardiac magnetic resonance imaging; LVH, left ventricular hypertrophy; NPV, negative predictive value; PPV, positive predictive

value.

better diagnostic and prognostic performance than traditional
ECG-LVH criteria, such as Cornell voltage, Cornell voltage
product, and Sokolow-Lyon, as well as the more recently
published Peguero—Lo Presti criteria. Our new LVH criteria
also showed similar prognostic performance as a predictor of
poor outcomes, similar to cMRI-LVH.

There are at least 38 criteria for diagnosis of LVH from
ECG.>%™ Most of these criteria rely on the QRS voltage to
diagnose LVH. However, using computer simulations, it has
been shown that the mass and shape of the left ventricle, on

which most traditional ECG-LVH criteria rely, are not the only
determinants of ORS voltage. LVH may manifest itself on ECG
as diffuse or regional slowing in conduction velocity
attributable to changes in the sequence of ventricular
activation, even if the anatomical features of the left ventricle
are unchanged.'”?® These findings provide further support
that the traditional electrocardiographic criteria for LVH do
not necessarily mirror changes in LVM over time; deficiencies
such as this explain the multitude of criteria proposed, none
of which provide a high level of diagnostic accuracy.”*"%* In

Table 3. Sensitivity, Specificity, and Predictive Values of BART-LVH Compared With the Standard of Reference of LVH by MRI in

Subgroups
Sensitivity, Specificity,
Subgroups Participants, n/BART-LVH, n (%) (95% Cl), % (95% Cl), % PPV, % NPV, % F1 Score, %
Median age, y
>61 2431/217 (8.9) 51.4 (44.7-58.2) 95.1 (94.2-96.0) 49.3 95.4 50.4
<61 2283/123 (5.4) 34.1 (26.0-42.2) 96.4 (95.6-97.2)* 36.6 96.0 35.3
Sex
Men 2187/165 (7.5) 46.0 (38.4-53.7) 95.6 (94.7-96.5) 455 95.6 457
Women 2527/175 (6.9) 43.5 (36.2-50.8) 95.8 (95.0-96.6) 44.0 95.7 43.8
Race
Blacks 1215/161 (13.3) 52.6 (44.1-61.1)* 91.6 (89.9-93.2)* 435 94.0 47.6
Nonblacks 3499/179 (5.1) 39.6 (33.0-46.3) 97.1 (96.5-97.6)* 45.8 96.2 425
Hypertension
Present 1978/271 (13.7) 52.7 (46.4-59.0)* 91.8 (90.5-93.1)* 47.2 93.3 49.8
Absent 2736/69 (2.5) 24.7 (16.2-33.3)* 98.3 (97.8-98.8)* 34.8 97.3 28.9
Obesity
Present 1333/94 (7.1) 44.4 (34.7-54.2) 95.9 (94.8-97.0) 46.8 95.6 45.6
Absent 3381/246 (7.3) 44.8 (38.5-51.1) 95.6 (94.9-96.3) 439 95.8 44.4
Diabetes mellitus
Present 534/62 (11.6) 49.3 (37.3-61.2) 93.8 (91.6-96.0) 53.2 92.8 51.2
Absent 4180/278 (6.7) 43.6 (37.7-49.5) 95.9 (95.3-96.5) 4238 96.1 432

BART indicates Bayesian Additive Regression Trees; LVH, left ventricular hypertrophy; MRI, magnetic resonance imaging; NPV, negative predictive value; PPV, positive predictive value.
*Represents statistically significant differences between subgroup levels.
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Table 4. Associations of the BART-LVH and cMRI-LVH With Adverse Outcomes

Participants, n/Events, n (%) Model 1* Model 2 Model 3*
LVH Criteria No LVH LVH HR (95% Cl)
All-cause mortality
cMRI-LVH 4372/496 (11.3) 338/95 (28.1) 2.72 (2.18-3.39) 2.25 (1.79-2.82) 2.21 (1.74-2.81)
BART-LVH 4372/507 (11.6) 338/84 (24.9) 2.33 (1.85-2.94) 1.81 (1.43-2.30) 1.88 (1.45-2.44)
Sokolow-Lyon 4295/518 (12.1) 414/73 (17.6) 1.49 (1.16-1.91) 1.15 (0.90-1.48) 1.12 (0.86-1.44)
Peguero—Lo Presti 4359/533 (12.2) 351/58 (16.5) 1.40 (1.07-1.84) 1.15 (0.88-1.51) 1.09 (0.82-1.44)
Cornell voltage 4554/560 (12.3) 156/31 (19.9) 1.72 (1.20-2.47) 1.33 (0.92-1.93) 1.25 (0.86-1.83)
Cornell voltage product 4419/544 (12.3) 291/47 (16.2) 1.37 (1.02-1.84) 1.08 (0.80-1.47) 1.06 (0.78-1.44)
Incident cardiovascular disease
cMRI-LVH 4372/421 (9.6) 338/71 (21.0) 2.51 (1.94-3.24) 2.25 (1.73-2.92) 1.91 (1.46-2.51)
BART-LVH 4372/432 (9.9) 338/60 (17.8) 2.01 (1.54-2.64) 1.78 (1.35-2.35) 1.46 (1.08-1.98)
Sokolow-Lyon 4295/432 (10.1) 414/60 (14.5) 1.51 (1.15-1.98) 1.27 (0.96-1.68) 1.14 (0.86-1.52)
Peguero-Lo Presti 4359/441 (10.1) 351/51 (14.5) 1.50 (1.12-2.01) 1.35 (1.01-1.81) 1.16 (0.86-1.57)
Cornell voltage 4554/471 (10.3) 156/21 (13.5) 1.43 (0.92-2.21) 1.43 (0.92-2.24) 1.08 (0.68-1.70)
Cornell voltage product 4419/456 (10.3) 291/36 (12.4) 1.26 (0.90-1.77) 1.16 (0.82-1.64) 0.96 (0.68-1.36)
Incident coronary heart disease
cMRI-LVH 4372/285 (6.5) 338/47 (13.9) 2.45 (1.80-3.34) 2.25 (1.65-3.09) 1.96 (1.41-2.73)
BART-LVH 4372/288 (6.6) 338/44 (13.0) 2.18 (1.58-2.99) 2.01 (1.45-2.78) 1.72 (1.20-2.47)
Sokolow-Lyon 4295/297 (6.9) 414/35 (8.5) 1.27 (0.89-1.80) 1.08 (0.75-1.53) 0.98 (0.68-1.41)
Peguero—Lo Presti 4359/299 (6.9) 351/33 (9.4) 1.41 (0.99-2.02) 1.29 (0.90-1.85) 11 (0.76-1.62)
Cornell voltage 4554/320 (7.0) 156/12 (7.7) 1.18 (0.66-2.10) 1.34 (0.75-2.42) 1.01 (0.56-1.84)
Cornell voltage product 4419/309 (7.0) 291/23 (7.9) 1.16 (0.76-1.78) 1.15 (0.75-1.77) 0.97 (0.62-1.50)

BART indicates Bayesian Additive Regression Trees; cMRI, cardiac magnetic resonance imaging; HR, hazard ratio; LVH, left ventricular hypertrophy.

*Unadjusted.
fAdjusted for age, sex, race/ethnicity, and income.

Adjusted for model 2 plus body mass index, diabetes mellitus, systolic blood pressure, use of blood pressure—lowering medications, smoking status, total cholesterol, and use of lipid-

lowering medications.

early published data from the Framingham study, the
prevalence of ECG-LVH was 3.2% compared with a 16% to
19% prevalence rate when LVH was assessed by echocardio-
graphy.* The low sensitivity of ECG to detect LVH and the
subsequent concern of false-positive LVH has been a
challenge in applying efficient screening for LVH using
ECG.?"2* Previous studies estimating LVM from ECG® have
shown that LVM is dependent on individual subject factors,
such as sex, body size, and race/ethnicity; therefore, sound
predictive modeling dictates incorporating said information.
These relationships were evident in our study, as demon-
strated by the better performance of the BART-LVH model,
which includes electrocardiographic and nonelectrocardio-
graphic characteristics compared with the BART-LVH ECG-
only model. Our proposed approach that uses more informa-
tion from ECG (and non-ECG), enabled by the availability of
digital electrocardiographic data and the modern predictive
modeling approach we used, provides the best positive

predictive value and a higher F1 score than any current
electrocardiographic criteria for LVH. Furthermore, if the
machine-learning process is automated, as we have demon-
strated here, adding more variables that enhance the model
would add more precision with little to no additional effort
required.

We observed better sensitivity of BART-LVH with those older,
those with hypertension, and blacks. It is known that the
prevalence of the disease under investigation affects the predictive
value of any test. This means that the same diagnostic test could
have a different predictive accuracy according to the clinical
setting in which it is applied. Because LVH is more prevalent in
those who are older and those with hypertension, it is not
unexpected for BART-LVH to show better diagnostic performance
in these subgroups of the populations. Furthermore, far more
blacks experienced hypertension in this study, 57.0%, than
nonblacks, 36.8%; therefore, the higher sensitivity for blacks is
likely related to their prevalence of hypertension.
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Despite the low sensitivity of ECG to detect LVH, ECG-LVH
has been shown to be associated with greater risk of poor
CVD outcomes, and its regression reverses the risk.?®
Interestingly, LVH detected by ECG has been shown to be
predictive of CVD outcomes in a similar manner to LVH
detected by imaging.?®?¢"?® These findings, along with wide
availability and low cost, have made the ECG an ideal tool for
initial evaluation of patients with hypertension to detect LVH.®
Because of the known performance of ECG-LVH to predict
poor outcomes better than their ability to detect anatomical
features (ie, diagnose LVH), it has been suggested that risk
stratification and prediction should be the primary use for
ECG-LVH criteria.”’ Even the current electrocardiographic
interpretation guidelines recommend developing new ECG-
LVH criteria for prediction.> We showed that our new LVH is
predictive of outcomes in a similar manner to LVH by cMRI
and is better than the traditional ECG-LVH criteria.

It could be argued that machine learning is too complex to
be used directly by clinicians to assess LVH, similar to
traditional ECG-LVH. Nevertheless, with the wide use of digital
electrocardiographic machines, it is feasible to incorporate
machine-learning algorithms into contemporary digital elec-
trocardiographic machines to produce automated interpreta-
tions of LVH using this approach. Also, it is understandable
that digital electrocardiographic systems do not typically
include all of the health information used in the BART LVH
calculation, making its derivation by current digital electro-
cardiographic systems a challenge. However, in years to
come, it may well be that automated electrocardiographic
machines will import patient characteristics, such as blood
pressure and body mass index, from the health information
system to good effect. Furthermore, for example, suppose
that systolic/diastolic blood pressure is not immediately
available, then nominal values, such as 120/80 mm Hg, could
be used in the interim. By developing automated models to
assess LVH, it is hoped the diagnosis of LVH will be made in a
less time-consuming/costly manner and will be picked up
sooner in a patient’s clinical course, thus leading to improved
outcomes via earlier detection and treatment. The success of
this approach in detecting LVH and predicting outcomes, as
we have shown, opens the door for using the same approach
in predicting several types of CVD outcomes.

Our study had some limitations. We compared our newly
developed LVH with only a few of the traditional ECG-LVH
criteria. However, we used the most common criteria,
including those with sex-specific cutoffs (Cornell voltage), a
mix of QRS duration and amplitudes (Cornell voltage product),
and a mix of limb and chest leads (Sokolow-Lyon and Cornell
voltage). All of these criteria have shown good diagnostic
performance in multiethnic settings compared with other LVH
criteria and high prognostic significance as a predictor for
CVD events,® and some of them are invariant to obesity.”’

Furthermore, the current recommendations for the use of
electrocardiographic criteria for detection of cardiac chamber
enlargement5 do not favor, or recommend, one set of LVH
criteria over others. Therefore, using any criteria should serve
the purpose in accord with these recommendations, and we
used several, including a recently developed ECG-LVH.'
Because BART-LVH includes electrocardiographic and non-
electrocardiographic data, it could be argued that the
comparison between BART-LVH and traditional ECG-LVH
would not be fair. Nevertheless, our comparison of BART-
LVH with traditional ECG-LVH is in the context of comparing
nonimaging LVH methods with each other. Also, Cornell
voltage includes nonelectrocardiographic data, such as sex, in
its definition, and we supplemented our results by using the
LVM models of Rautaharju et aI,8 which include sex, race, and
weight. Another limitation is that MESA participants were free
of apparently clinical CVD at baseline. Hence, our results may
not be generalizable to those with CVD.

Despite these limitations, we presented new LVH criteria
via a novel approach extended to predict CVD outcomes. Our
analysis builds on the strengths of the MESA, including its
large sample size and community-based racially diverse
population with well-ascertained variables and outcomes.

Conclusions

We developed a novel non—imaging-based model for LVM
using BART. We showed that our method generates LVH
criteria that have better diagnostic and prognostic perfor-
mance than current traditional LVH criteria. Further study is
needed to determine whether our criteria are broadly
applicable to different populations and for detection and
prediction of other outcomes.
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Table S1. List of variables considered in development of BART-LVH.

Type

Names

Individual variables: 13

Sex, height, weight, race/ethnicity, age, BMI, SBP, DBP,

heart rate, PR interval, P axis, QRS interval, QRS axis

Variables replicated in

46 variables X 12 leads =
552 variables

each of the 12 ECG leads:

P duration, P amplitude, P area, P intrinsicoid,

P’ duration, P’ amplitude, P’ area, P’ intrinsicoid,

P total area,

Q duration, Q amplitude, Q area, Q intrinsicoid,

R duration, R amplitude, R area, R intrinsicoid,

R’ duration, R amplitude, R’ area, R’ intrinsicoid,

S duration, S amplitude, S area, S intrinsicoid,

S’ duration, S’ amplitude, S’ area, S’ intrinsicoid,

T amplitude, T area, T intrinsicoid,

T amplitude, T’ area, T’ intrinsicoid,

T total area, special T amplitude,

STM amplitude, STE amplitude, STJ amplitude,

min of STM/STE/STJ amplitude, max of STM/STE/STJ amplitude,
QRS area, QRS balance, QRS deflection balance, QRS intrinsicoid

LVH= left ventricular hypertrophy




Table S2. Relative Partial RZ increase due to last variable added to BART model.

Variable Relative Partial R? increase
R amplitude, V1 8.7%
R amplitude, V5 8.0%
Heart rate 7.1%
Sex 6.8%
S amplitude, V1 6.4%
QRS interval 5.5%
Height 5.1%
S amplitude, V3 5.0%
R amplitude, aVF 4.9%
Systolic blood pressure 4.8%
T amplitude, V1 4.5%
P interval, V4 4.5%
Age 3.8%
T amplitude, V6 3.8%
R intrinsicoid deflection, V6 3.7%
Diastolic blood pressure 3.3%
R amplitude, V3 3.0%
STJ amplitude, V1 2.3%
T amplitude, | 2.1%
S amplitude, V2 1.8%
STJ amplitude, V4 1.6%
R amplitude, aVL 1.3%
T amplitude, V4 1.3%
STJ amplitude, V2 1.1%

R amplitude in V4 and P’ duration in V2 contributed negatively and hence were removed from the list of increasers above



Table S3. Predictive and discriminatory comparison of criteria in the validation set.

Normalized LVM

Criteria R? with Normalized LVM by cMRI | AUC for LVH by cMRI
BART-LVH 26.0% 82.9%
BART-LVH (ECG only) 21.5% 81.5%
Sokolow-Lyon 12.0% 71.4%
Peguero-Lo Presti 5.6% 66.3%
Cornell Voltage Product 6.5% 65.9%
Cornell Voltage 4.5% 67.9%
Rautaharju LVM model 3: 5.3% 65.5%
Normalized LVM

Rautaharju LVM model 2: 3.1% 62.0%
Normalized LVM

Rautaharju LVM model 1: 2.5% 61.6%




Table S4. Associations of the BART-LVH and cMRI-LVH agreement with adverse outcomes.

LVH Criteria Model1* Model 2+ Model 31+
All-cause Mortality
HR (95%Cl) HR (95%Cl) HR (95%Cl)
cMRI-LVH=BART-LVH=Y 3.63 (2.73, 4.84) 2.45 (1.82, 3.29) 2.52 (1.84, 3.44)
CMRI-LVH=Y/BART-LVH=N 2.22(1.62,3.03) 2.15(1.55, 2.96) 2.11(1.52,2.94)
cMRI-LVH=N/BART-LVH=Y 1.60(1.12, 2.29) 1.40(0.97, 2.02) 1.53(1.05, 2.24)
‘ Incident Cardiovascular Disease |
HR (95%Cl) HR (95%Cl) HR (95%Cl)
CMRI-LVH=BART-LVH=Y 3.13(2.23,4.41) 2.49 (1.75, 3.53) 2.01(1.38,2.92)
cMRI-LVH=Y/BART-LVH=N 2.19 (1.55, 3.10) 2.11 (1.48, 3.02) 1.89(1.32,2.72)
CMRI-LVH=N/BART-LVH=Y 1.41(0.94, 2.13) 1.36 (0.90, 2.07) 1.18 (0.76, 1.82)
‘ Incident Coronary Heart Disease ‘
HR (95%Cl) HR (95%Cl) HR (95%Cl)
cMRI-LVH=BART-LVH=Y 3.39(2.28, 5.04) 2.88 (1.92, 4.33) 2.44 (1.57,3.79)
CMRI-LVH=Y/BART-LVH=N 1.82 (1.15, 2.86) 1.83 (1.16, 2.90) 1.69 (1.06, 2.68)
cMRI-LVH=N/BART-LVH=Y 1.46 (0.90, 2.39) 1.45 (0.88, 2.38) 1.31(0.78, 2.20)
HR (95%Cl) = hazard ratio (95% Confidence interval), LVH= left ventricular hypertrophy; cMRI= cardiac magnetic resonance imaging
* Unadjusted; tAdjusted for age, sex, race/ethnicity and income

1 Adjusted for model 2 plus body mass index, diabetes, systolic blood pressure, use of blood pressure lowering medications, smoking status,
total cholesterol and use of lipid lowering medications



Figure S1. Receiver operating characteristic curves for LVH criteria compared to LVH by cMRI
in the validation sample (n=940).
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Figure S2. Correlation between left ventricular mass estimated by BART and cMRI in men and
women in the training sample (n=3774).
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Figure S3. Rautaharju Model 1; Model with Cornell Voltage only.
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Figure S4. Rautaharju Model 2; Model with Cornell Voltage and weight.
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Figure S5. Rautaharju Model 3; Model with Cornell Voltage, weight and one ECG variable
added.
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